الأحد، 16 فبراير 2014

الذرة

مدخل إلى علم الذرة

كان فلاسفة اليونان القدماء يتناقشون فيما بينهم حول طبيعة المادة, فكانوا يتساءلون عما ينتهي إليه تقسيم المادة , هل يمكن مواصلة التقسيم إلى ما لا نهاية؟. أم أن هناك حد تنتهي عنده إمكانية التقسيم ؟
كان صاحب هذه التساؤل الفيلسوف لوسيب سنة 445 قبل الميلاد، وجاء بعده تلميذه ديموقريطس Democritus   و قال: أن كل شيء مصنوع من جزيئات صغيرة, فهي تتجمع مع بعضها البعض بطرق مختلفة لتشكل مواد مختلفة.
وأن الجزيئات بحد ذاتها لا يمكن أن تتغير ولا يمكن تقسيمها إلى أجزاء اصغر. وأطلق عليها اسم الذرات Atoms أي الذي لا يمكن تقسيمه. :Atomos من الكلمة اليونانية
و من قوله في هذا الموضوع: ( نقول عن الشيء حلو أو مر, أو نقول حار أو بارد, ونصف لونه, والحقيقة أن كل هذا لا يتعدى كونه ذرات في الخلاء) وأيضا ( أن هذه الذرات لا يمكن أن يعتريها الفناء)
ومن تعاليم ديموقريطس : انه لا يوجد شيء سوى الذرات والفراغ ( الخلاء)  vacuum , وما عداهما فهو محض الخيال.
وتعد هذه الذرات التي تفوق الحصر كمكونات أوليه لا متغيره ولا تفنى, أساس كل ما يوجد ويحدث في الطبيعة.
وللذرات المستقلة صور هندسية ثابتة وحركات متغيره من جراء ما تتعرض له من ضغوط و تصادمات مع بعضها البعض.
وفي ظل كل المتغيرات في بنية الطبيعة, تظل الذرات ثابتة محتفظة بكيانها, لا شيء يصدر عن لا شيء ولا فناء لما هو موجود, التغير مجرد اتحاد وانفصال بين الأجزاء وما اختلاف الأشياء جميعها إلا لتنوع ذراتها عددا ومقدارا وبنية وترتيبا.
ولما كانت حركات كل ذره على حده خاضعة لقانون طبيعي وضوابطه فليس هناك شيء اختياري ( تحكمي) arbitrary  يحدث في الطبيعة كلها, ولا شيء يحدث مصادفه accidentally, ولكن لكل شيء عله وضرورة, ولا تستطيع حواسنا المتواضعة إدراك هذه العناصر  elementsمن حيث طبيعتها وصورها , ولكنها فقط تحس بتأثيرها على نحو غامض( فقط في الخيال حيث الحلاوة والمرارة والحرارة والبرودة والألوان, أما في الحقيقة فليس هناك سوى الذرات والفراغ) وهذه شهادة بارزه على( تنصيل (decoloration العالم, أي التأكيد على أن جميع المشاهدات الحسية المباشرة ما هي إلا وهم ( خداع) وأن معرفة الحالة الحقيقية للأشياء لا بد أن تؤدي بنا إلى وصف لا يشتمل إلا على الصورة الهندسية و الحركة الميكانيكية للذرات.
وتقدم هذه الصورة الفكرية عن الفلسفة المادية إمكان اعتبار كل حوادث الطبيعة على أنها نتائج للانتظام ( الاطراد) الصارم.
لم يتمكن ديموقريطس من إثبات ذلك بسبب عدم اعتماد أفكاره على الوقائع .
هناك من أحيا تعاليم ديموقريطس منهم: ابيقوروس Epicurus من خلال سلوكه في الحياة إذ كان ذا اتجاه عقلاني rationalistic.
وكذلك الشاعر والفيلسوف الروماني الكبير لوكريتس Lucretius فقد شرح باستفاضة أفكار الاطراد الذري لكل مجالات الطبيعة من خلال قصيدته التعليمية العظيمة (عن طبيعة الأشياء) وعرف علماء الغرب تعاليمه في إطار الدراسات الإنسانية في أبان عصر النهضة مثل جاسندي Gassendi الذي قام بإدخال الفلسفة اليونانية في العلوم الغربية. وكذلك كان ديكارت Descartes  من مؤيدي ديموقريطس. أما الذين خالفوا ديموقريطس منهم بطليموس وارسطوا الذي اعتبر أن الطبيعة تتكون من أربعة عناصر هي الماء والهواء والنار والتراب





وعلى هذا الأساس فان كل مادة من المواد تنجم عن اتحاد إحدى هذه العناصر مع عنصر آخر أو أكثر. وبسبب هذا المفهوم الخاطئ أقام سدا منعيا يحول دون فهم الإنسان لطبيعة المادة واحدث ضررا للإنسانية لا يمكن تقديره. اخذ الفلاسفة بتعاليم أرسطو وضاعة نظرية ديموقريطس في هاوية النسيان خلال عصور عديدة والنتيجة كانت تأخير التقدم العلمي بما يزيد على 10 قرون اخذ الناس فيها بنظريته محاولين تحويل معادن مثل النحاس والرصاص إلى الذهب والفضة من خلال إضافة إحدى العناصر الأربعة أو أكثر بنسب مختلفة وعكفوا على الأفران ولكنهم لم يفوزوا بذرة واحدة من الذهب .


الذرة في عصر النهضة

استطاع العالم فرنسيس بيكون العودة إلى نظرية ديموقريطس (1561-1626) بعد أن عمل على إقصاء تعاليم أرسطو وانتزاعها من العلم وكان له الفضل في وضع القواعد المنطقية التي وضعها للتجريب واستفاد منها المجربين أبرزهم روبرت بويل Robert Boyle (1627-1691) فقد كان يهتم بالمضخات فدرس عمليات الضخ واخذ يقيس تغير حجم الغاز تحت قيم مختلفة للضغط بثبوت درجة الحرارة
P1v1=P2v2
واستنتج أن الغازات تتصرف وكأنها مؤلفة من جسيمات صغيرة جدا يفصل بينها الخلاء (ذرات) و أن هذه الجسيمات في حالة اضطراب دائم.
ومن ثم جاء العالم اسحاق نيوتن Isaac Newton (1643-1727) ووضع أسس الميكانيكا الكلاسيكية ليدعم ما قاله واستنتجه Boyle واعتبر نيوتن أن الغازات مكونة من ذرات وعزا لها بعض القوى أو الخواص التي تؤثر بفضلها في بعضها بعضا.
وهكذا لم يكد القرن السابع عشر ينتهي حتى كانت نظرية ديموقريطس الذرية قد بعثت من جديد ودعمت من قبل اكبر فيلسوف في ذلك العهد وهو بيكون , ومن قبل اكبر عالمين مجربين هما بويل ونيوتن.




تجارب ومشاهدات

أثارت مشاهدات تتعلق بسلوك المواد كثيرا من التساؤلات عن تكوين هذه المواد فبعض هذه المشاهدات أتت نتيجة مراقبة أحداث شائعة , وبعضها نتيجة تجارب مصممة استخدمت فيها الأدوات والقياسات , كالتجارب التي كان يجريها علماء مثل : Boyle (1662) ,J.Priestly (1733-1804) جوزيف بريستلي , A. L. De Lavoisier (1743-1794). والدارس الذي تتولد عنده تساؤلات يسعى الى وضع تفسير لها مما قد يؤدي الى ظهور نظرية أو قانون .
وقد لاحظ بويل من تجاربه على الغازات ان حجم الغاز المحصور ينقص بزيادة الضغط الواقع عليه ويزداد الحجم بنقصان الضغط الواقع عليه، وقد استنتج أن الغازات يتكون من دقائق صغيرة بينها فراغات ,تقل هذه الفراغات و تقترب هذه الدقائق من بعضها بزيادة الضغط الواقع عليها.
كما لاحظ لافوازييه أن النقصان في كتل المواد عند تسخينها مساو لكتل الغازات التي تنطلق منها ، وقد استنتج أن المادة لا تفنى ولا تخلق من عدم.
كما أثارت ظاهرة الاحتراق، جدلا واسعا بين العلماء والمجربين في ذلك الوقت إلى أن جاء الكيميائي (جوهان بيتشر)J. J. Becher  (1635-1682)  وأدخل عنصر جديد أسمه الفلوجستون (phlogiston ) إلى العناصر الأربعة الخاصة بأرسطو, والفلوجستون كلمة إغريقية تعني (الاشتعال أو اللهب) وهو عنصر غريب جدا إذ ليس له لون ولا رائحة ولا طعم, يوجد في بعض المواد ويخلو من بعضها الآخر, إن هذا العنصر كاف لتفسير معظم ظواهر الكيميائية , كالأكسدة والاشتعال والتحلل , ذلك أن أي مادة تشتعل لابد وان تحتوي عنصر الاشتعال – أي الفلجستون , فإذا ما اشتعلت بالفعل أدى ذلك إلى فقدان هذا العنصر و انطلاقه في الهواء مخلفا وراءه مادة ذا خواص مختلفة .
كان صاحب هذا التفسير (جورج ستال) G. E. Stal (1660-1734) الذي أيد نظرية الفلوجستون , لم يستطع ستال أن يحصل على الفلوجستن كمادة حتى انه اعتقد أن الفحم هو الفلوجستن , أثناء ذلك كان العالم بريستلي قد قام بعدة تجارب فسرها وفقا للفلوجستن إلا انه اكتشف الأكسجين ومثله العالم كافنديش الذي اكتشف الهيدروجين وبين انه إذا مزج مع الهواء وأحدثت شرارة كهربائية في المزيج حصل الماء.
وهكذا لم يتقدم مفهوم الذرة في القرن 18 حتى جاء لافوازييه، واجرى تجاربه مستخدما ميزان حساس، مما ادى الى انهيار مفهوم الفوجستن.
واتضح للافوازييه، انه عند إشعال أو تحميض بعض الفلزات المعينة أو المواد الأخرى في الهواء فان الكتلة الناتجة تزيد في وزنها الكلي عن وزن الفلز الأصلي نفسه . ولم تتماش هذه الحقيقة مع نظرية الفلوجستن !  واثبت أن العناصر لا تحلل بل تتحد بعناصر أخرى لتكون المركبات. وبين من خلال تجاربه أن ليس للفلوجستن أي دور.
كل هذه التجارب أدت إلى وضع قوانين سميت بقوانين الاتحاد الكيميائي.

قوانين النسب الوزنية

-1 قانون حفظ المادة {Law of conservation mass}
وضع هذا القانون لافوازييه نتيجة أبحاثه في أكسدة الزئبق فقد لاحظ انه عندما يسخن الزئبق بتماس الهواء فانه يتغير لونه ليصبح احمر ترابيا كما انه يزداد وزنه لكن في أثناء ذلك يكون قد نقص وزن الهواء الذي سخن هذا الزئبق فيه .
وقد عكس هذه التجربة عن طريق تسخينه الشديد ليعود إلى لونه الأصلي واسترجاع الغاز الذي وزنه يساوي تماما وزن نقصان الهواء الذي كان الزئبق قد سخن فيه التجربة الماضية.
كتلة المواد المتفاعلة = كتلة المواد الناتجة

2  - قانون النسب الثابتة {Law of constant proportions}
وضع هذا القانون بروست وينص إلى أن كل مركب كيميائي مهما اختلفت تحضيره أو الحصول عليه , ومهما تباعدت أماكن وجوده , إنما يتركب من عناصره ذاتها , متحدة مع بعضها البعض بنسب مختلفة كتلية ثابتة لا تتغير . فلكي نركب الماء مثلا من عنصريه وهما الهيدروجين والأكسجين فلا بد لنا دوما من كمية من الأكسجين اكبر وزنا بثمانية مرات من وزن الهدروجين وتولد ( ونقول ألان انه ينبغي 16 غراما من الأكسجين لتتحد مع غراميين من الهدروجين وتولد 18 من الماء ) وتبقى هذه النسبة ثابتة دوما في جميع انواع الماء .
عبرت هذه القوانين ( قوانين الاتحاد الكيميائي ) عن حقائق وعلاقات صحيحة بنيت على نتائج تجارب ومشاهدات ملموسة , والتوصل إلى مثل هذه العلاقات يمثل خطوة مهمة من خطوات العمل العلمي التي جاءت نتيجة للمشاهدات وجمع المعلومات , لم ينقص هذه القوانين سوى نظرية منهجية تحتويها وتفسرها , وهو العمل الذي اضطلع به العالم ( جون دالتون ) .
j. Dalton (1766-1844)   الذي أدرك القوة المثيرة للتصور الذري وقدرته على أرشاد البحث الفيزيائي مستقبلا , واليه يعود الفضل في استخدام فكرة الذرات لفهم الاطرادات  الأساسية في علم الكيمياء الذي يضع حدودا فاصلة دقيقة بين المخلوطات والمركبات لمختلف المواد  الكيميائية .

وضع دالتون الافتراضات الأتية :.
تتكون المادة من دقائق غير قابلة للانقسام تسمى ذرات .
ذرات العنصر الواحد لها الصفات نفسها , كالحجم والشكل والكتلة , وتختلف في هذه الصفات عن ذرات أي عنصر آخر , وكل عنصر يحدد بواسطة وزن ذرته .
يتم الاتحاد الكيميائي بواسطة اتحاد الذرات بنسب عددية بسيطة .
A+B =AB
على فرض أن A,B هي ذرة عناصر مختلفة
وقد عين دالتون النسب الوزنيه لبعض العناصر والمركبات بالنسبة لوزن الهيدروجين ( الذي اتخذه واحدا ) , كما ابتكر مجموعة من الرموز ليمثل بها النظرية الذرية والتركيب الكيميائي .
ومن خلال تأمله لنسب اتحاد العناصر في المركبات المتعددة , وجد دالتون إثباتا لنظريته , فالماء يتكون باتحاد ثمانية أجزاء وزنيه من الأكسجين بجزء واحد من الهيدروجين , وإذا كان هناك فائض في أي العنصرين – فانه يتبقى .
ثم في حالة إذا ما اتحد عنصران بأكثر من نسبة واحدة ليكونا مركبين مختلفين – كما في حالة الكربون والأكسجين حين يتحدا ليكونا أول أكسيد الكربون أو ثاني أكسيد الكربون – فان اتحادهما يكون بنسبة عددية بسيطة , أي واحد إلى واحد أو واحد إلى اثنين مثلا . وإذا كانت كمية الأكسجين وسطا , فان الناتج يكون مزيجا من المركبين . وقد توصل دالتون من هذه العلاقة المنتظمة إلى ما عرف بقانون النسب المضاعفة Law of multiple proportion , والذي ينص إذا اتحد عنصران وكونا أكثر من مركب واحد , فان النسبة بين الكتل المختلفة من احد العنصرين التي تتحد مع كتلة ثابتة من العنصر الآخر تكون نسبة عددية بسيطة . والذي يعد القانون الثالث من قوانين الاتحاد الكيميائي , قد تطلب الأمر ما يقارب نصف قرن لتوضيح نظرية دالتون الأساسية , فقد احتدم الجدل بين الكيميائيين بخصوص الأوزان النسبية المضبوطة لمختلف الذرات , والتي بدونها لا يمكن وصف المركبات وصفا دقيقا ولا اكتشاف عدد الذرات اللازمة لتكون مركب ما . ففي عام 1809 وضع العالم (جوزيف لويس جاي- لوساك) J. L. Gay Lussac(1850-1778)، قانون اتحاد الغازات بالحجم . المعروف باسمه والذي ينص تتحد الغازات مع بعضها البعض بنسبة الأعداد الصحيحة , وعادة تكون أعدادا صحيحة صغيرة, بين لوساك في مذكراته أن مختلف الغازات عندما تتحد مع بعضها تكون النسبة بين حجموها نسبا بسيطة . مثلا : يتحد حجمين من الهيدروجين مع حجم من الأكسجين, فيتقلص الحجم بمقدار حجم واحد من الماء (كبخار) . وتتحد ثلاثة حجوم من الهيدروجين مع حجم من الازوت فتؤلف حجم من غاز النشادر . أدى هذا القانون إلى ارتباك كبير في البحث العلمي , إذ أن كثيرين لم يدركوا أن لوساك يتحدث عن أجزاء بالحجم , بينما يتحدث دالتون عن أجزاء بالوزن . أجرى جاي لوساك تجارب عدة على اتحاد الغازات وقام بإعادة حسابات النتائج المنشورة من قبل, وقد لاحظ وجود نسبة عددية بسيطة من أعداد صحيحة بين حجوم الغازات. وقد اكتشف جاي لوساك في إحدى تجاربه العويصة أن حجما واحدا من النيتروجين يتحد مع حجم واحد من الأكسجين ليتكون حجما من اكسيد النيتريك, وظل الحجم الكلي كما هو لم يتغير.
وحتى ندرك مدى صعوبة هذه المشكلة فلنستعرض الأفكار الآتية.
أدت أفكار دالتون عن التنافر المتبادل بين الذرات من نوع واحد إلى الاعتقاد بان الذرات إما أن تتحد بنوع آخر وإما أن تظل مفردة, بمعنى أن الذرات المتشابه من العنصر نفسه لا تكون أزواجا مع بعضها البعض.
لم يكن لوساك ذا تفكير فلسفي , بخلاف دالتون الذي أدرك على الفور النتيجة المحتومة لهذا القانون . إذا قلنا أن حجما من الهيدروجين يتحد مع حجم من الكلور ويولد حجمين من كلور الماء , فذلك كقولنا أن ذرة من الهيدروجين وذرة من الكلور تؤلفان ذرتين من حمض كلور الماء .
كان دالتون قد أبدى الاعتراض واستنتج أن لوساك مخطئ .
لقد كان هذا الاختلاف الظاهري بين قانون جاي لوساك ونظرية دالتون , ذلك أن دالتون لم يكن يفرق بين الذرات والجزيئات.
إلى أن جاء العالم اماديو افوجادرو A. Avogadro (1856-1776), الذي كان قد نشر في عام 1811 بحث ينص على (أن الحجوم المتساوية من كل الغازات تحتوي على عدد متساو من الجزيئات تحت الظروف نفسها من الضغط ودرجة الحرارة), والذي عرف فيما بعد بمبدأ افوجادرو, هذا المبدأ الذي وقف بين نظرية دالتون وقانون جاي لوساك, وعن طريق تعريفه لكل من الذرات والجزيئات والتفريق بينهما استطاع حل المعضلة السابقة, التي تقول انه إذا كان عدد الذرات متساويا في حجوم متساوية, فان حجم واحد من غاز الكلور وحجم واحد من غاز الهيدروجين لا يمكن أن يعطي أكثر من حجم واحد من غاز كلوريد الهيدروجين لا المركب (كلوريد الهيدروجين), يحوي على ذرة كلور وذرة هيدروجين, ولكن في تجربة جاي لوساك انه قد تشكل حجمين من كلوريد الهيدروجين. اوجد افوجادرو تفسيرا لهذا التناقض عندما ادخل مفهوم الجزيء في الحقيقة التالية “جزيئات العناصر الغازية قد تتكون من أكثر من ذرة واحدة, أو بصورة عامة فان جزيئة العنصر الغازي قد تتكون من ذرتين أي جزيئة ثنائية الذرة”.
وخلص إلى أن نتائج لوساك تفترض أن الأحجام المتساوية من الغازات المختلفة تحتوي على نفس العدد من الذرات ( أو على أعداد ترتبط بنسب بسيطة ) . وبدا بتعريف الذرات والجزيئات وبين أن العناصر الغازية لا تتكون من ذرات منفردة , بل من جزيئات لهذه العناصر , وان كل جزئ يتكون من عدد معين من الذرات .


نموذج طومسون

في عام 1896م أجرى أبحاثاً حول أشعة الكاثود. وفي عام 30 أبريل 1897م، أدهش الأوساط العلمية بإعلانه عن أن الجسيمات المكونة لأشعة الكاثود هي أصغر حجماً بكثير من الذرات، وقد سميت هذه الجسيمات بالإلكترونات.
وفى عام 1897م أظهر اكتشاف الالكترون للعالم "طومسون" أن المفهوم القديم عن الذرة منذ ألفى عام، والذي ينطوي عليها على أنها جسيم غير قابل للانقسام كان مفهوماً خاطئاً، كما أظهر أيضاً أن للذرة - في الواقع- ترتيب معقد غير أنهم لم يغيروا مصطلح "الذرة" أو الغير قابله للتجزئة إلى "اللا ذرة" وأدى اكتشاف "طومسون" عن الإليكترون ذو الشحنة السالبة إلى إثارة الإشكاليات النظرية لدى الفيزيائيين لأن الذرات ككل - تحمل شحنات كهربائية متعادلة فأين الشحنة الإيجابية التي تعادل شحنة الإلكترون.
وفى الفترة ما بين عامي (1903 - 1907) حاول - "طومسون" أن يحل هذا اللغز السابق الذي ذكره عن طريق تكييف نموذج للذرة والتي اقترحها في المقام الأول "اللورد كيلفن" في عام 1902، وطبقاً لهذا النموذج والذي يشار إليه غالباً بنموذج "كرة معجونة وبها بعض حبوب الزبيب" فإن الذرة غالباً هنا عبارة عن كرة ذات شحنة موجبة متماثلة أما الشحنات السالبة فإنها منتشرة على الإلكترونات مثل الزبيب المدفون في كرة معجونة.
وترجع أفضلية نظرية " طومسون" عن الذرة في أنها ثابتة، فإذا لم توضع الإلكترونات في مكانها الصحيح فستحاول أن تعود إلى مواضعها الأصلية ثانية. وفى نموذج معاصر أيضاً نظر العلماء إلى الذرة على أنها مثل النظام الشمسي أو مثل كوكب "زحل" ذو حلقات من الإلكترونات محيطة بالشحنة الكهربية الإيجابية المركزة.

حيث توصل طومسون إلى أن :.
1.     الذرة كرة مصمتة موجبة الشحنة.
2.     تتخلل الالكترونات السالبة الذرة (كما تتخلل البذور ثمرة البرتقال).
3.     الذرة متعادلة كهربائياً.
كان عمل طومسون يمثل تقدماً أساسياً في مجال الفهم العلمي لبنية الذرة مقترحاً نموذجاً عرف فيما بعد بنموذج طومسون. إن عمله هذا أعطى الكثير من البراهين العملية لكثير من النظريات التي وضعت حول البنية الذرية في عصره.




















نموذج رذرفورد

اكتشف رذرفورد من خلال تجاربه بأن الشحنة الموجبة للذرة تتركز في مركزها في نواة صغيرة مكثفة ومتراصة وعلى أساس ذلك وضع نموذجه الذري الذي عرف بالنموذج النووي. افترض راذرفورد عام 1911م النموذج النووي للذرة معتبراً أن الذرة تتكون من كتلة صغيرة جداً وكثيفة جداً ذات شحنة موجبة تسمى النواة وتحتل مركز الذرة وتحتوي نواة الذرة على جميع البروتونات ولذا فان كتلة الذرة هي تعبير عن مجموع كتل البروتونات في نواتها (حيث أن قيمة كتل الإلكترونات صغيرة جداً…. فهي قيم مهملة). كما أن شحنة النواة الموجبة ترجع إلى تمركز البروتونات الموجبة بها. وتتوزع الالكترونات في الذرة حول النواة بنفس الطريقة التي تتوزع بها الأجرام السماوية حول الشمس. وبما أن الذرة متعادلة لذا فعدد الاليكترونات السيارة يساوي عدد البروتونات بالنواة.
قام العالم راذرفورد بإجراء بعض من أبرز التجارب للوصول إلى حقائق تركيب الذرة. وقد اعتمد في تجارية على استخدام جسيمات ألفا المنطلقة من مادة مشعة وفي اعتقاده أن المادة المشعة تطلق إشعاعاتها في كافة الاتجاهات وبلا حدود وهي تتكون من جسيمات ألفا (œ-particles) الموجبة الشحنة وجسيمات بيتا (ß-particles) السالبة الشحنة وأشعة جاما (-rays) المتعادلة الشحنة. ويمكن اعتبار جسيمات ألفا تحمل على أنها ذرات للهليوم فقد منها إليكترونين ولذا فان جسيمات ألفا تحمل شحنتين موجبتين ولها كتلة تساوي أربعة مرات كتلة ذرة الهيدروجين. وقد ساعد "رذرفورد" على تنمية معرفتنا بالذرة ،عندما قام مع "هانز جيجر" بإجراء تجارب رقائق الذهب الشهيرة والتي أظهرت أن للذرة نواة صغيرة ولكنها تحتوى على كل الكتلة تقريباً. فقد قام بإطلاق جسيمات "ألفا" خلال الرقائق الذهبية ثم استقبلت هذه الجسيمات كومضات ضوئية. لقد سمح راذرفورد بإطلاق حزمة رقيقة للغاية من جسيمات ألفا من مصدر مشع كعنصر البولونيوم بالمرور في اتجاه صفيحة معدنية رقيقة من الفضة أو الذهب ،وبعد اختراق تلك الجسيمات الصفيحة المعدنية استقبلها على لوح من كبرتيد الخارصين موضوع خلفها وكانت النتائج :
 قام رذرفورد عمليا بإطلاق جسيمات "ألفا" خلال الرقائق الذهبية تصل سماكة الرقيقة الذهبية الواحدة إلى حوالى 0.00004 سنتيمتر فقط، ثم استقبل هذه الجسيمات كومضات ضوئية على شاشة الاستقبال ومرت معظم الجزئيات مباشرة عبر الرقائق في حين انحرفت واحدة فقط من عشرين ألف جزئ (ألفا) إلى حوالى 45ْ م أو أكثر. هذه التجربة شكلت ثورة علمية في المفهوم الذري وقتها وكانت الطريقة الوحيدة لقبول واستيعاب نتائج هذه التجربة هي فيما استطاع رذرفورد تفسيره على أن كامل كتلة الذرة تقريبا مجتمعة في المركز وتمتلك هذه النواة حجما صغيراً جداً مقارنة بحجم الذرة الكلية وقد توصل رذرفورد نتيجة ذلك إلى القول ((من خلال التفكير والدراسة أدركت أن هذا الارتداد المتفرق هي نتيجة حتمية للتصادم الفردي فعندما قمت بالعد وجدت أنه من المستحيل أن أحصل على أي نتيجة ولهذا العدد الضخم، إلا إذا أخذت نظام يكون الجزء الأكبر من الكتلة من الذرة فيه مركزا بالنواة الدقيقة. وبعد كل هذا التحليل أستطيع القول بأنني قد توصلت إلى وجود ذرة ذات مركز دقيق جداً به أغلب الكتلة ويحمل شحنة موجبة تعادل شحنة الإلكترون.)). إن الطريقة الوحيدة التي مكنت راذرفورد من

تفسير نتائج تجربته المدهشة وقدرة الجسيمات على المرور والانحراف ضمن الذرة هي الاستنتاجات بأن :
أولاً : وجود فراغ كبير في الذرة دليل على عدم الانحراف الكلي للجسيمات.

ثانياً : احتواء الذرة بعض الجسيمات الثقيلة والمشحونة بشحنات موجبة وبالتالي فإن اقتراب جسيمات ألفا من هذه الجسيمات الموجبة قد تسبب في تنافر بسيط معها ، وبالتالي كان سببا في انحراف بعض جسيمات ألفا.

ثالثاً: تمركز الجسيمات الموجبة الشحنة بالذرة في وسطها مما سبب الانحراف الكلى لجسيمات ألفا (قليلة العدد نظراً لصغر حجم الفراغ الذي تشغله النواة) المارة بمركز النواة. مما سبب الانحراف الكبير لهذه الجسيمات.

نموذج الذرة التي توصل إليها رذرفورد (النموذج النووي) :.
1.     الذرة تشبه المجموعة الشمسية (نواة مركزية يدور حولها على مسافات شاسعة الالكترونات سالبة الشحنة)

2.     الذرة معظمها فراغ (لأن الذرة ليست مصمتة وحجم النواة صغير جدا بالنسبة لحجم الذرة)

3.     تتركز كتلة الذرة في النواة (لأن كتلة الالكترونات صغيرة جدا مقارنة بكتلة مكونات النواة من البروتونات والنيوترونات)

4.     يوجد بالذرة نوعان من الشحنة (شحنة موجبة بالنواة وشحنات سالبة على الالكترونات

5.     الذرة متعادلة كهربيا لأن عدد الشحنات الموجبة (البروتونات) يساوي عدد الشحنات السالبة (الالكترونات)

6.     تدور الالكترونات حول النواة في مدارات خاصة.

7.     يرجع ثبات الذرة إلى وقوع الالكترونات تحت تأثير قوتين متضادتين في الاتجاه متساويتين في المقدار هما قوة جذب النواة للالكترونات وقوة الطرد المركزي الناشئة عن دوران الالكترونات حول النواة.


الإرتيابات في نموذج رذرفورد ……..النووي !

اولاً : الذرة ليست متزنة ميكانيكياً حيث أن النواة الموجبة تقوم بجذب الالكترونات السالبة وتلتحم وتتعادل بفرض أن الالكترونات سالبة. إذا كانت الالكترونات تدور حول النواة في مسار دائري تنشأ قوة مركزية تساوي (ك ع2 / نق) وبالتالي يتحرك الالكترون بتسارع مركزي ويكون مع النواة ثنائي متذبذب فيشع أمواجاً كهرومغناطيسية ويدور في مسار حلزوني إلى أن يسقط في النواة.

ثانياً : بما أن الالكترون يدور حول النواة ويكون معها زوجا متذبذباً إذاً الذرة تشع طيف مستمر متغير في التردد والطول الموجي وتتناقص طاقته تدريجيا وهذا يناقض مع التجارب العملية التي أثبتت أن الذرات تشع طيفاً خطياً له طول موجي محدد بدقــة.


























نموذج بور

في عام 1913م اقترح الفيزيائي الدنماركي نيلز بور نموذجًا للذرة تنتظم فيه الإلكترونات في مدارات متوالية الاتساع حول نواة صغيرة تتكون من البروتونات والنيوترونات. ويقترح بور أن الإلكترونات تدور حول النواة في مسارات دائرية وبمدارات محددة ، وطالما أنها في مداراتها فإنها تمتلك طاقة محددة وثابتة ، وتفقد جزء من طاقتها على شكل إشعاع ضوئي عند الانتقال من مدار أبعد إلى مار أقرب عن النواة ، والعكس صحيح ، فعند إعطاء الإلكترون كمية من الطاقة كالتسخين مثلا ، عندئذ يمكن أن ينتقل من مدار أقرب إلى مدار أبعد عن النواة بسبب امتصاصه هذه الطاقة. واعتقد بور بأن العديد من خواص العنصر تعتمد على(عدد) الإلكترونات الموجودة في المدار الخارجي لذرة ذلك العنصر. ولقد ساعد نموذج بور للذرة على تفسير الكيفية التي تتفاعل بها الذرات مع الضوء والأشكال الأخرى للإشعاع. فقد افترض بور أن امتصاص وابتعاث (إطلاق) الضوء بوساطة الذرة يستلزم تغييرًا في وضع وطاقة الإلكترون فيقفز من مدار لآخر. وقد استطاع الكيميائيون الحصول على الكثير من المعلومات حول تركيب الجزيئات عن طريق قياس كمية الإشعاع التي تمتصها والتي تنبعث منها. افتراضات نيلز بور في ...


نموذجه الذري : 
1- الإلكترونات تدور حول النواة في مسارات دائرية الشكل وضمن مدارات محددة ولها طاقات ثابتة ومحددة. 

2- كل مدار له طاقة محددة وثابتة يعبر عنها بأرقام صحيحة من 1-7 سميت بالأعداد الكمية الرئيسية.
3- لا يفقد الإلكترون طاقة ما دام في مداره وإذا صعد لمدار أعلى فإنه يكتسب طاقة تسمى طيف امتصاص. وإذا نزل لمدار أدنى فإنه يفقد طاقة ضوئية تسمى طيف انبعاث.













النمـوذج الـذري الحديث

تتكون الذرة من نواة تحتوي على الشحنة الموجبة (بروتونات) تتركز فيها معظم الكتلة محاطة بإلكترونات سالبة الشحنة تتحرك بسرعة كبيرة ولها خواص الموجات بموجب معادلة رياضية وموجودة في فراغ حول النواة يكون احتمال وجودها فيه أكثر من 90% تسمى المجالات الإلكترونية.















الذرة في العصر الحديث

الذرة هي اصغر جزء من مادة عنصر كيميائي يمكن ان تنقسم اليه المادة و تظل حاملة لصفاتها الكيميائية ، و تتكون الذرات من جسيمات دون ذريّة ، وهي بشكل أساسي:
· البروتونات موجبة الشحنة
· النيوترونات متعادلة الشحنة
· الالكترونات سالبة الشحنة
الذرة هي حجر الأساسي في بناء الكيميائية و المادة بشكل عام ، و هي أصغر جزء يمكن الوصول إليه و يبقى كما هو أثناء التفاعلات الكيميائية .و بذلك فإنه عند الوصول لأى ذرة توجد بمفردها فإن هذه الذرة تعبر عن عنصر معين . و يوجد 92 عنصر فقط من العناصر بصورة طبيعية على الأرض ، على أنه توجد بعض العناصر الأخرى التي توجد على بعض النجوم مثل عنصر التكنيتيوم والكاليفورنيومو يوجدا على السوبرنوفا .
كل عنصر متفرد بعدد البروتونات الموجودة في نواة ذلك العنصر . كل ذرة لها عدد من الإلكترونات مساو لعدد البروتونات ، وفى حالة عدم وجود هذا التساوي تسمى الذرة بالأيون . ويمكن لذرات نفس العنصر أن تحتوى على عدد مختلف من النيوترونات ، وهذا في حالة تساوى عدد البروتونات و الإلكترونات . الذرات التي لها أعداد مختلفة من النيوترونات تسمى نظير لهذا العنصر.
تم تصنيع بعض العناصر بواسطة القذف النوى ، و لكن هذه العناصر كانت غير ثابتة كما أنها تتغير بعفوية إلى عناصر أخرى أثبت عن طريق التحلل الإشعاعي .
على الرغم من أنه يوجد 92 عنصر فقط بصورة طبيعية ، فإن ذرات هذه العناصر تترابط لتكون الجزئيات و انواع أخرى من المركبات الكيميائية .فالجزيئات تتكون من ذرات عديدة ، فمثلا ، جزيء الماء يتكون من اتحاد 2 ذرة هيدروجين و ذرة أكسجين .


تركيب الذرة

أكثر النظريات التي لاقت قبولا لتفسير تركيب الذرة هي النظرية الموجية للإلكترون. وهذا التصور مبني على تصور بوهر مع الأخذ في الاعتبار الاكتشافات الحديثة والتطويرات في ميكانيكا الكم.
و التي تنص على :
تتكون الذرة من جسيمات تحت ذرية (البروتونات ،الإلكترونات ،النيوترونات). مع العلم بأن معظم حجم الذرة يحتوى على فراغ.
في مركز الذرة توجد نواة موجبة الشحنة تتكون من البروتونات ،النيوترونات (ويعرفوا على أنهم نويات) النواة أصغر 100,000 مرة من الذرة. فلو أننا تخيلنا أن الذرة بإتساع مطار هيثرو فإن النواة ستكون في حجم كرة الجولف
معظم الفراغ الذري تشغله مدارات تحتوى على الإلكترونات في توزيع إلكترونى محدد. كل مدار من نوع s يمكن أن يتسع لعدد 2 إلكترون، محكومين بأربعة أرقام للكم، عدد الكم الرئيسي، عدد الكم الثانوي، عدد الكم المغناطيسي، وعدد الكم المغزلي.
كل إلكترون في أي من المدارات له قيمة واحدة لعدد الكم الرابع والذي يسمى عدد الكم المغزلي المغناطيسي، وقيمته إما s=+1/2 (متجه إلى أعلى) أو s=-1/2 (متجه إلى أسفل).
المدارات ليست ثابتة ومحددة في الاتجاه وإنما هي مناطق حول النواة تمثل احتمال تواجد 2 إلكترون لهم نفس الثلاث أعداد الأولى للكم، وتكون آخر حدود هذا المدار هي المناطق التي يقل تواجد الإلكترون فيها عن 90 %.
عند انضمام الإلكترون إلى الذرة فإنه يشغل أقل مستويات الطاقة، والذي تكون المدارات فيه قريبة للنواة (مستوى الطاقة الأول). وتكون الإلكترونات الموجودة في المدارات الخارجية (مدار التكافؤ) هي المسئولة عن الترابط بين الذرات. 
حجم الذرة

لا يمكن تحديد حجم الذرة بسهولة حيث أن المدارات الإلكترونية ليست ثابتة ويتغير حجمها بدوران الإلكترون فيها . ولكن بالنسبة للذرات التي تكون في شكل بلورات صلبة ، يمكن تحديد المسافة بين نواتين متجاورتين وبالتالي يمكن عمل حساب تقديري لحجم النواة . والذرات التي لا تشكل بلورات صلبة يتم استخدام تقنيات أخرى تتضمن حسابات تقديرية . فمثلا حجم ذرة الهيدروجين تم حسابها تقريبيا على أنه 1.2× 10-10 م . بالمقارنة بحجم البروتون وهو الجسيم الوحيد في نواة ذرة الهيدروجين 0.87× 10-15 م . وعلى هذا فإن النسبة بين حجم ذرة الهيدروجين وحجم نواتها تقريبا 100,000 .وتتغير أحجام ذرات العناصر المختلفة ، ويرجع ذلك لأن العناصر التي لها شحنات موجبة أكبر في نواتها تقوم بجذب الإلكترونات بقوة أكبر ناحية النواة .
العناصر والنظائر المشعة

الذرات تصنف عموما بعددها الذري، الذي يقابل عدد البروتونات في الذرة. يحدد العدد الذري لأي عنصر تنتمي تلك الذرة. على سبيل المثال، ذرات الكربون تحتوي على ستة بروتونات، كل الذرات التي بنفس هذا العدد الذري تشارك في تشكيلة منوعة من الخواص  الفزيائية وتظهر نفس السلوك الكيميائي.
رقم الكتلة، العدد الذري للكتلة، أو العدد النيكلوني لعنصر هو العدد الكلي للبروتونات والنيوترون في ذرة ذلك العنصر، لأن كل بروتون أو نيوترون اساسا له كتلة من 1 amu. عدد النيوترون في ذرة ليس له تأثير على نوع العنصر. كل عنصر يمكن أن يتخذ ذرات مختلفة عديدة لكن بنفس عدد البروتونات والألكترونات، لكن أعداد مختلفة من النيوترون. كل من له نفس العدد الذري لكن رقم كتلة مختلف، هذه تدعى النظائر المشعة لعنصر ما. عند كتابة اسم نظير مشع، اسم العنصر يتبع بالرقم الكتلة. على سبيل المثال، كربون 14 يحتوي على ستة بروتونات وثمانية نيوترونات في كل ذرّة، ليكون رقم الكتلة الكلي من 14.
إنّ ذرة الهيدروجين هي ابسط الذرات، لها عدد ذري 1 وتشمل بروتون واحد وإلكترون واحد. نظائر الهيدروجين المشعة التي تحتوي نيوترون واحد تدعى الديوتوريم Deuterium أو هيدروجين2 ؛ إما نظائر الهيدروجين المشعة التي تحتوي على إثنان نيوترون تدعى تريتيم Tritium أو هيدروجين 3.
إن الكتلة الذرية التي أدرجت لكل عنصر في الجدول الدوري هي معدل كتلة النظير المشع الموجود في الطبيعة مرجحا بدرجة وفرتهم.

التكافؤ والترابط

سلوك الذرة الكيميائي يرجع في الأصل بصورة كبيرة للتفاعلات بين الإلكترونات . والإلكترونات الموجودة في الذرة تكون في شكل إلكتروني محدد ومتوقع . وتقع الإلكترونات في أغلفة طاقة معينة طبقا لبعد تلك الأغلفة عن النواة  . ويطلق على الإلكترونات الموجودة في الغلاف الخارجي إلكترونات التكافؤ ، والتي لها تأثير كبير على السلوك الكيميائي للذرة . والإلكترونات الداخلية تلعب دور أبضا ولكنه ثانوي نظرا لتأثير الشحنة الموجبة الموجودة في نواة الذرة .
كل غلاف من أغلفة الطاقة يتم ترتيبها تصاعديا بدأ من أقرب الاغلفة للنواة والذى يرقم برقم 1 ويمكن لكل غلاف أن يمتلئ بعدد معين من الإلكترونات طبقا لعدد المستويات الفرعية ونوع المدارات التي يحتويها هذا الغلاف :

· الغلاف الأول : من 1 : 2 إلكترون - مستوى فرعى s - عدد 1 مدار .
· الغلاف الثاني : من 2 : 8 إلكترون - مستوى فرعى p, s - عدد 4 مدارات .
· الغلاف الثالث : من 3 : 18 إلكترون - مستوى فرعى d, p, s - عدد 9 مدارات .
· الغلاف الرابع : من 4 : 32 إلكترون - مستوى فرعى f d, p, s - عدد 16 مدار .

يمكن تحديد كثافة الإلكترونات لأى غلاف طبقاً للمعادلة : 2 n2 حيث " n " هي رقم الغلاف ، ( رقم الكم الرئيسي )وتقوم الإلكترونات بمليء مستويات الطاقة القريبة من النواة أولا . ويكون الغلاف الأخير الذى به الإلكترونات هو غلاف التكافؤ حتى لو كان يحتوى على إلكترون واحد
وتفسير شغل أغلفة الطاقة الداخلية أولا هو أن مستويات طاقة الإلكترونات في الأغلفة القريبة من النواة تكون أقل بكثير من مستويات طاقة الإلكترونات في الأغلفة الخارجية . وعلى هذا لأنه في حالة وجود غلاف طاقة داخلي غير ممتلئ ، يقوم الإلكترون الموجود في الغلاف الخارجي بالتنقل بسرعة للغلاف الداخلي (ويقوم بإخراج إشعاع مساوى لفرق الطاقة بين الغلافين).
تقوم الإلكترونات الموجودة في غلاف الطاقة الخارجي بالتحكم في سلوك الذرة عند عمل الروابط الكيميائية . ولذا فإن الذرات التي لها نفس عدد الإلكترونات في غلاف الطاقة الخارجي (إلكترونات التكافؤ) يتم وضعها في مجموعة واحدة في الجدول الدوري .المجموعة هي عبارة عن عامود في الجدول الدوري ، وتكون المجموعة الأولي هي التي تحتوى على إلكترون واحد في غلاف الطاقة الخارجي ، المجموعة الثانية تحتوي على 2 إلكترون ، المجموعة الثالثة تحتوي على 3 إلكترونات ، وهكذا . وكقاعدة عامة ، كلما قلت عدد الإلكترونات في مستوى في غلاف تكافؤ الذرة كلما زاد نشاط الذرة وعلى هذا تكون فلزات المجموعة الأولى أكثر العناصر نشاطا وأكثرها سيزيوم ، روبديوم ، فرنسيوم .
وتكون الذرة أكثر استقرارا ( أقل في الطاقة ) عندما يكون غلاف التكافؤ ممتلئ . ويمكن الوصول لهذا عن طريق الآتي: يمكن للذرة المساهمة بالإلكترونات مع ذرات متجاورة ( رابطة تساهمية ) . أو يمكن لها أن تزيل الإلكترونات من الذرات الأخرى ( رابطة أيونية ) . عملية تحريك الإلكترونات بين الذرات تجعل الذرات مرتبطة معا ، ويعرف هذا بالترابط الكيميائي وعن طريق هذا الترابط يتم بناء الجزيئات والمركبات الأيونية . وتوجد خمس أنواع رئيسية

للروابط :
· الرابطة الأيونية                                                    
· الرابطة التساهمية
· الرابطة التناسقية
· الرابطة الهيدروجينية  · الرابطة الفلزية
الذرة في الصناعة

تقوم الذرة بدور غاية في الأهمية في الصناعة ، يتضمن ذلك الصناعات النووية ، علم المواد الصناعية ، وأيضا في الصناعات الكيميائية .

الذرة في العلم

ظلت الذرة محل أنظار تركيز العلماء لعقود . وكان للنظرية الذرية تأثير كبير على كثير من فروع العلم ، مثل الفيزياء النووية ، الطيف وكل فروع الكيمياء تقريبا . ويتم دراسة الذرة هذه الأيام في مجال ميكانيكا الكم و الجسيمات تحت-الذرية .
و قد تمت دراسة الذرة بدون قصد مباشر في القرن 19 و القرن 20 وفى السنين الحالية ، وبظهور تقنيات جديدة أصبحت دراسة الذرة أسهل وأدق . فعن استخدام الميكروسكوب الإلكتروني الذى تم إكتشافه في عام 1931 تم تصوير ذرات مفردة . كما تم إستحداث طرق جديدة للتعرف على الذرات والمركبات . فمثلا يتم استخدام مطياف الكتلة لتحديد الذرات والمركبات . كما يتم استخدام جي سي إم إس " كروماتوجرافى الغاز و مطياف الكتلة " لمعرفة المواد . وأيضا التأكد من وجود ذرات أو جزيئات معينة عن طريق أشعة إكس كريستالوجرافى

الذرات في الكون والعالم من حولنا

باستعمال نظرية التوسع، عدد الذرات في الكون المنظور يمكن توقعه بأن يكون بين 4x1078 و6x1079 . وبسبب الطبيعة اللانهائية للكون، فإن العدد الكلي للذرات في كامل الكون قد يكون أكثر بكثير أو لانهائي. هذا لا يغير من العدد المتوقع للذرات في الكون الملاحظ ضمن حوالي 14 بليون سنة ضوئية - الذي كل ما يمكن أن نلاحظه فقط هو بعمر 14 بليون سنة.




المراجع :.

* أفاق علمية و تربوية (http://al3loom.com )

* موقع الكون   (http://www.alkoon.alnomrosi.net/

*  ويكبيديا (http://ar.wikipedia.org )



ليست هناك تعليقات:

إرسال تعليق